

Electric-Hydraulic Dynamic and Fatigue Testing System

Servopulser series electric-hydraulic dynamic and fatigue testing systems feature servo-hydraulic actuators, which are able to accurately reproduce input waveforms. Therefore, they are highly accurate in applying loads ranging from low to high. From high-performance standard models to products customized to satisfy various unique testing requirements, these systems support a wide range of dynamic testing applications.

High Capacity and Compact

By controlling the flow rate of oil, compact hydraulic actuators can apply large forces at a wide range of testing speeds, from extremely slow to very fast. This means they can be used for a wide variety of testing applications.

A very rigid loading frame is used to prevent buckling samples. This ensures high reliability for a variety of testing applications.

High-performance servo valves allow seamless and immediate change of the test force or speed.

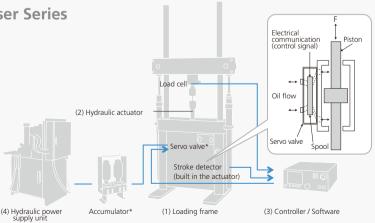
By using the optional energy-conservation unit (ECU) (page 36), an energy-saving mode can be used to optimize the hydraulic power supply unit's power level based on the testing parameters and testing status. It reduces the hydraulic power supply unit's power level when tests are in standby mode.

System Pneumatic Dynamic an

Electric Hydraulic Dynamic and Fatigue Testing

J System

Electric Hydr


EMT/MMT Series

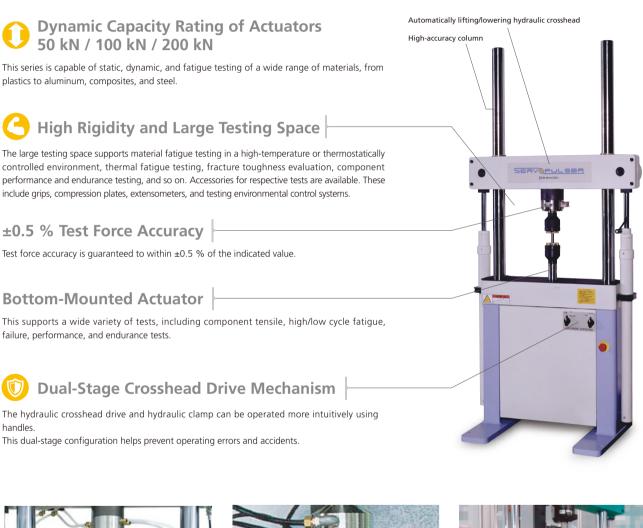
EHF Series

Basic Configuration of Servopulser Series Electric-Hydraulic Systems

By selecting (1) a loading frame, (2) a hydraulic actuator, (3) a controller and software, and (4) a hydraulic power supply unit, Servopulser series electric-hydraulic systems are able to accommodate a wide variety of test force and testing speed requirements. The hydraulic drive actuator, which is electrically controlled via a servo valve, provides reciprocating motion capable of high test forces and a wide response range, from low to high frequency.

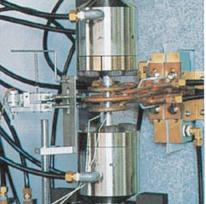
* Items marked with an asterisk are included based on the actuator and hydraulic power supply unit combination.

Various Dynamic Testing Systems


Electric-Hydraulic Dynamic and Fatigue Testing System

EHF-E Series

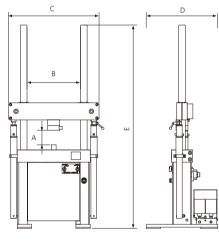
For Dynamic and Fatigue Testing of Various Materials and Small Parts


This series features an E-type frame with a bottom-mounted actuator, which can satisfy a wide variety of dynamic and fatigue testing requirements, from fatigue testing of materials to evaluating the performance of components.

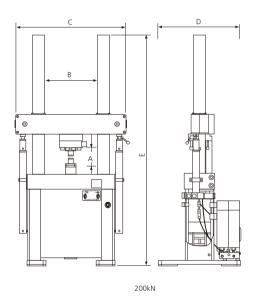
handles.

Resistance Heat High-Temperature Testing System

High-Frequency Induction Heat High-Temperature Testing System

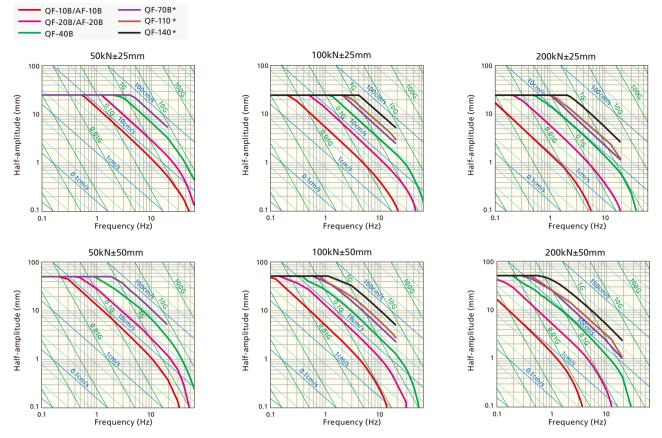


Component Test


Specifications

Model		EHF -EV051k1	EHF -EV051k2	EHF -EV101k1	EHF -EV101k2	EHF -EV200k1	EHF -EV200k2
Max. dynamic test force		±50kN		±100kN		±200kN	
Max. static test force		±60kN		±120kN		±240kN	
Actuator stroke		±25mm	±50mm	±25mm	±50mm	±25mm	±50mm
Cycle speed and amplitude		See amplitude characteristics charts.					
	Controlled items	Test force and stroke (two can be added as options)					
Range			24-bit rangeless				
Test force	Indication accuracy	Within 0.5 % of indicated value or ± 0.02 % of maximum dynamic test force, whichever is greater					ater
Crosshead drive mechanism		Hydraulic drive (with hydraulic clamp)					
Applicable hydraulic power supply unit		QF-10B, QF-20B, QF-40B, QF-70B, QF-110, QF-140 AF-10B, AF-20B					
Power requirements		Varies depending on the hydraulic power supply unit (see pages 34 and 35).					

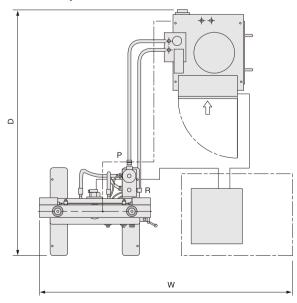
Testing Machine Main Unit Dimensions



50/100kN

Capacity 50kN 100kN 200kN Actuator stroke ±25mm ±50mm ±25mm ±50mm ±25mm ±50mm Standard + Standard + Column length Standard 400 400 400 400 400 400 140 to 140 to 170 to 370 to 340 to 340 to 120 to 320 to 200 to 400 to 175 to 375 to А 960 1360 930 1330 930 1330 910 1310 1000 1400 975 1375 Testing space (mm) В 560 с 1170 980 980 Main unit D 750 750 850 dimensions (mm) Е 2155 2555 2155 2555 2155 2555 2155 2555 2405 2805 2405 2805 790 790 820 790 790 820 1460 1530 1460 1530 Weight (kg) 820 820 Frame rigidity (mm/kN) 0.012 0.0012 0.00065

Amplitude Characteristics (60 Hz)


* It is not possible to use standard configurations of models QF-70B or higher for high-frequency regions due to the servo valve characteristics. However, these models may be used for testing at high frequencies if the servo valve is changed, for example. Contact Shimadzu for more information

• The above characteristic curves indicate the relation between half-amplitude and cycle speed, given sine wave motion at the rated load level.

The above indicates the amplitude characteristics given a 60 Hz power supply. Characteristics with a 50 Hz power supply will be about 5/6 of indicated values.
 The above characteristics do not include the frame or load cell characteristics. Compensate for the influence of these factors to determine actual amplitude characteristics.

- The indicated characteristics values were calculated based on typical characteristics of the servo valve being used, which may result in a difference of about 10 % on the frequency axis.
- There may be limitations on testing frequencies, depending on jig, sample, or other characteristics.

Standard Layout

Main Unit	Hydraulic Power Supply Unit	Space Required (W x D)	
	QF-10B	2300×2100	
	QF-20B	2300×2200	
E50kN	QF-40B	2300×2600	
EDUKIN	QF-70B	2300×2800	
	AF-10B	2300×2200	
	AF-20B	2300×2200	
	QF-10B	2300×2100	
	QF-20B	2300×2200	
E100kN	QF-40B	2300×2600	
ETOUKIN	QF-70B	2300×2800	
	AF-10B	2300×2200	
	AF-20B	2300×2200	
	QF-10B	2500×2100	
	QF-20B	2500×2200	
52001.01	QF-40B	2500×2600	
E200kN	QF-70B	2500×2800	
	AF-10B	2500×2200	
	AF-20B	2500×2200	

• At the installation site, provide about 500 mm of space on all four sides of the system, in addition to the space requirements indicated above, to allow access for operation and maintenance. • The drawing above indicates the dedicated space requirements. The shape and orientation of the hydraulic power supply unit may vary depending on its capacity.

For a more detailed standard layout drawing, contact Shimadzu.

Optional Accessories and Systems

Servopulser series systems allow selection of the optimal combination of units based on testing objectives. In addition, an extensive selection of optional testing equipment, such as various testing jigs, detectors, and atmospheric control testing units, is available. For more details, refer to the separate optional accessories brochure.

Tensile and Compression Test Jigs

• Front-Opening Hydraulic Grip

Designed for full-amplitude tensile and compression fatigue testing, these grips offer superior ease-of-operation and ensure high-accuracy testing for a wide range of tests.

Maximum test force		±20 to 200 kN (multiple capacities available)	
Operating temperature range		RT to +50 °C	
Applicable sample		Rod / flat plate	
Metals	Р	Plastics Composite mater	rials

• Split Flange Rod Grip

These grips allow samples to be secured easily and firmly. They are ideal for full-amplitude tensile and compression fatigue testing of round rod samples.

Maximum test force	±10 to 200 kN (multiple capacities available)
Operating temperature range	RT to +100 °C -196 to 300 °C
Applicable sample	Rod
Metals P	lastics Composite materials

• Non-Shift Wedge Grip for Static Testing

These grips can only be used for static testing. These high-capacity grips apply the self-tightening action of a wedge.

Note: Supports only tensile testing

Maximum test force	±20 to 250 kN (multiple capacities available)	
Operating temperature range	0 to +120 °C	
Applicable sample	Rod / flat plate	
Metals Composite ma	aterials Lumber Plastics	

Bolt Testing Jigs

• Screw Tensile Test Jig

This jig is for tensile fatigue testing of various nuts and bolts. Various grips sizes are available depending on the bolt size.

Maximum test force		±100/250	kN
Operating temperature ran	ge	RT to +50	°C
Applicable sample		Nuts/bolts	5
Metals	P	lastics	Composite materials

Manual Non-Shift Plate Grip

These grips are designed for full-amplitude tensile and compression fatigue testing of flat plate materials and feature a simple and efficient construction.

Maximum test force	±5 to 100 kN (multiple capacities available)	
Operating temperature range	RT to +50 °C -196 to +300 °C	
Applicable sample	Flat plate	
Metals	Plastics Composite materials	

• Pin-Type Grip for Flat Samples + Dynamic Strain Gauge (for gauge length displacement)

These grips are designed for half-amplitude tensile fatigue testing.

Note: Supports only tensile testing.

Maximum test force		+6 kN/	'10 kN	
Operating temperature range		-196 to +300 °C (±6 kN) -20 to +300 °C (±10 kN)		
Applicable sample		Flat plate	(max. 30 mm wide	and 5 mm thick)
Metals	etals Composite materials		Lumber	Plastics

Grips for CT Test Samples + Clip Gauge

These compact grips are designed specifically for tensile test samples and are compliant with ASTM E399 and E1820 standards. They can be used for tests performed to determine fracture toughness or crack propagation. Note: Supports only tensile testing.

Maximum test force	±6 to 80 kN	
Operating temperature range	RT to +100 °C -20 to 300 °C	
Applicable sample	CT test sample	
Metals P	lastics Composite materials	

Screw Looseness Test Device

This device allows testing various parameters to determine the loosening process of bolts. It applies a vibrational displacement in the thread tightening direction and in the perpendicular direction and then measures the change in tightening force in relation to the number of vibrations.

Maximum test force	±20 kN
Operating temperature range	RT to +100 °C -20 to +300 °C
Applicable sample	CT test sample
Metals P	lastics Composite materials

Compression and Bending Test Jigs

Compression Plate

Compression plates are available with both he top and bottom fixed or with the top compression plate mounted on a spherical seat.

Maximum test force		20 to 500 (multiple o	kN apacities available)
Operating temperature range		RT to +250) °C
Applicable sample		60 to 220	mm dia.
Metals	Р	lastics	Composite materials
Rubber		Rock	Component

• Uniform Bending Test Jig (for full-amplitude fatigue testing)

This jig uses ball bearings at each support point to apply uniform bending loads.

Ν	laximum test force	±2 to 10 kN
	Max. dynamic bending moment	±20 to 250 N/m
Ope	rating temperature range	RT to +50 °C -196 to +200 °C

Maximum test force	50/100 kN		
Max. dynamic bending moment	2/6 k N/m		
Operating temperature range	RT to +100 °C -196 to +300 °C		
Metals	Plastics Composite materials		

• 3-Point/4-Point Bending Test Jig (for partial half-amplitude fatigue testing)

2kN

Plastics

50 N/m RT to +100 °C

-196 to +300 °C

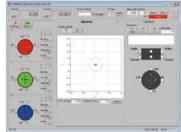
Lower span: 30 to 100 mm Upper span: 15 to 50 mm

Composite materials

Maximum test force

Max. dynamic bending moment

Operating temperature range


Jig dimensions

Metals

Axis Adjustment System

Consisting of an axis adjustment unit, axis center sensor testing sample, strain amplifier unit, and dedicated axis adjustment software, this system allows adjusting the tilt between grips and adjusting the axis centers in the horizontal direction. It allows users to obtain highly reliable data by eliminating any bending stresses on samples.

Metals Plastics Composite materials

Various Environmental Control Testing Systems

Various environmental control testing systems are required to simulate harsh environments or environments where materials are actually used, such as thermostatic, high-temperature, or extremely low-temperature environments. Therefore, an environmental control system can be added in the large testing space provided by the Servopulser series system.

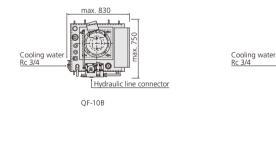
See page 58. Metals

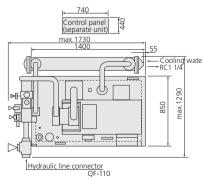
Various Dynamic Testing Systems

Water-Cooled Hydraulic Power Supply Unit

QF Series

These hydraulic power supply units are designed specifically for electric-hydraulic dynamic and fatigue testing systems. The system includes an oil pump, oil tank, filter, cooler, pressure regulator, and other equipment.

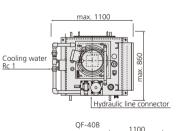

- The oil pump is a gear pump with minimal pulsing and low noise.
- The filter includes a 3-micron element that helps prevent wear in the servo valve and other equipment.
- Space savings have been achieved by orienting the pump and motor vertically (QF-10B to 70B, AF-4, and AF-10B to 20B).

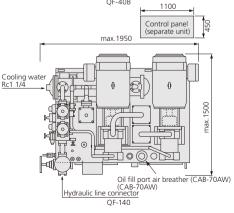


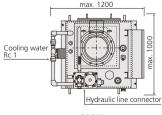
Model		QF-10B	QF-20B	QF-40B	QF-70B	QF-110*	QF-140		
	E-type	0	0	0	0	0	0		
	U-type	0	0	0	0	0	0		
Applicable L-type testing system JF-type		0	0	0					
		0	0						
	J-type	0	0	0	0	0	0		
	T-type	0	0	0	0	0	0		
	TQJ-type								
0.1.1.1	50Hz	9L/min	19L/min	42L/min	81L/min	108L/min	138L/min		
Output (approx.)	60Hz	11L/min	24L/min	51L/min	11L/min	104L/min	162L/min		
Oil pressure	Normal			211	ЛРа				
Hydraulic oil		Mobil DTE 25							
	Туре	Fixed output gear pump							
Pump Number of units			2						
Motor	Capacity	5.5kw	11kw	22kw	37kw	45kw	37kw×2		
Oil filter		3µm							
Tank capacity		90L	90L	190L	300L	500L	590L		
Operating noise (at 21	MPa)	74dBA	76dBA	78dBA	80dBA	83dBA	85dBA		
Power requirements	Single-phase 100 V	1.5kVA							
Power requirements	Three-phase 200 V	8kVA	16kVA	32kVA	47kVA	57kVA	93kVA		
Cooling water volume	required	20L/min	20L/min	65L/min	80L/min	110L/min	150/180L/min(050Hz/60Hz)		
Compatible cooling tow	ver (tons of cooling)	2	3	5	10	20	20		
Main unit	Width (mm)	830mm	920mm	1100mm	1200mm	1730mm	1950mm		
	Depth	750mm	750mm	860mm	1000mm	1290mm	1500mm		
dimensions (approx.)	Height	1235mm	1235mm	1400mm	1515mm	1370mm	1550mm		
Weight	Including oil	Approx. 530 kg	Approx. 530 kg	Approx. 720 kg	Approx. 920 kg	Approx. 1500 kg	Approx. 2200 kg		
Recommended circuit breaker capacity (3-phase 200 V / 1-phase 100 V)		50A/15A	100A/15A	150A/15A	200A/15A	300A/15A	400A/15A		

Notes

The indicated operating noise values are provided for reference and are not guaranteed.
The operating noise level may vary depending on the installation site conditions.
50 Hz and 60 Hz models are available for the QF-110 only.






max. 920

OF-20B

Hydraulic line connector

QF-70B

Air-Cooled Hydraulic Power Supply Unit

These hydraulic power supply units are designed specifically for electric-hydraulic dynamic and fatigue testing systems. The system includes an oil pump, oil tank, filter, cooler, pressure regulator, and other equipment.

AF-4

3.7L/min

4.5L/min

2.2kw

0.1kw

24L

56dBA

3.5kVA

800mm

770mm

700mm

Approx. 185 kg

20A/15A

- The oil pump is a gear pump with minimal pulsing and low noise.
- Does not need any cooling water.

E-type U-type L-type

JF-type

J-type T-type TQJ-type 50Hz

60Hz

Туре

Normal

Capacity

Number of units

Single-phase 100 V

Three-phase 200 V Width (mm)

Model

Applicable

testing system

Output (approx.)

Oil Pressure

Hydraulic oil

Cooling fan

Operating noise*

Power Supply

Oil filter Tank capacity

Weight

Pump

Motor

AF-20B

19L/min

24L/min

11kw

0.2kw

Electric Hydraulic Dynamic and Fatigue Testing System

Electric Hydr

amic and Fatigue

EHF series

3µm	
90L	90L
64dBA	71dBA
1.5kVA	
8kVA	17kVA
870mm	870mm
900mm	900mm
1700mm	1700mm
Approx. 630 kg	Approx. 630 kg
50A/15A	100A/15A

AF-10B

9L/min

11L/min

21MPa

Mobil DTE 25

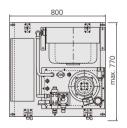
Fixed output gear pump

1

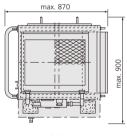
5.5kw

0.1kw

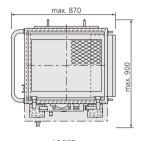
Including oil Recommended circuit breaker capacity (3-phase 200 V / 1-phase 100 V)


Depth

Height


* The AF-4 operating noise value indicates the level in front of the unit when it is installed in the dedicated base stand

Note: The AF series is air-cooled. Keep the ambient temperature at the hydraulic power supply unit installation site at 25 °C or less. * The indicated operating noise values are provided for reference and are not guaranteed.


* The operating noise level may vary depending on the installation site conditions.

AF-10B

AF-20B

Servo Controller 4830 ler for Dynamic and Fatigue Test Energy-Conservation Unit for Servopulser Series Hydraulic Power Supply Units

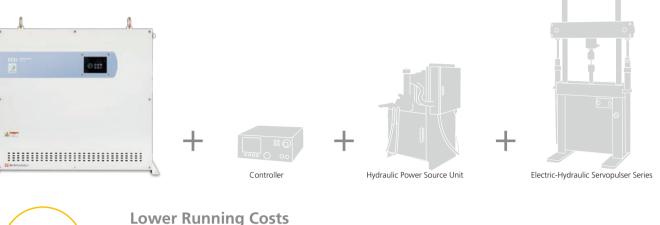
ECU Series

Up to 50 %

Lower Power

Consumption

Automatic **Energy-Saving**


Operation

Remote

Operation

ECU Controller

Helps Reduce Energy Consumption, CO2 Emissions, and Running Costs by Up to 50 %

Using the ECU energy-conservation unit enables an energy-saving mode that can switch OFF the hydraulic power supply unit power depending on the testing parameters and testing status. It also reduces the hydraulic power supply unit's power level when tests are in standby mode. Note: When using the ECU2 in a region with 60 Hz power supply (up to 30 % when using the ECU1).

Automatically Sets the Optimal Energy-Saving Mode

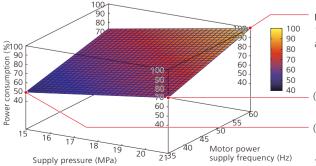
Used in combination with Microsoft Windows software, the ECU unit can automatically set the optimal energy-saving mode based on test parameters or testing status. This efficiently reduces operating power consumption while continuing to perform intended tests.

Operation with a Hand-Held Controller

The unit can be operated with a hand-held controller.

The hydraulic power supply unit's energy-saving settings (motor frequency and supply pressure settings) can be set from the Servo Controller 4830 or from Windows software for 4830.

Lower Hydraulic Power Supply Unit Operating Noise and Heat Generation


The energy-saving mode reduces the operating noise and heat generated from the hydraulic power supply unit. It also reduces heat generated from the oil, which helps extend the life of the oil.

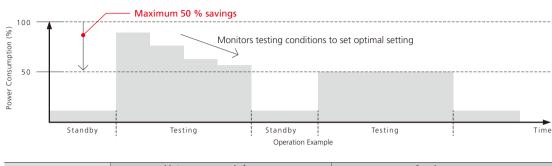
ECU Units Can Be Retrofitted on Existing Hydraulic Power Supply Units (QF-A, QF-B, and AF Series)

Notes • For systems using a controller model prior to the Servo Controller 4830, an ECU controller is required. • Retrofitting an ECU unit on an existing system requires an on-site survey of the system in advance

• It may not be possible to retrofit an ECU unit on existing hydraulic power supply units in poor site conditions.

Energy-Saving Mode Reduces Power Consumption

Normal operation: Assumes a power consumption rate of 100 % when operated with a supply pressure of 21 MPa and power supply frequency of 60 Hz.

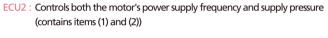

- (1) Reducing the motor's power supply frequency to 35 Hz reduces power consumption by about 25 to 40 %.*
- (2) Reducing the supply pressure to 15 MPa reduces power consumption by about 45 to 55 %.*

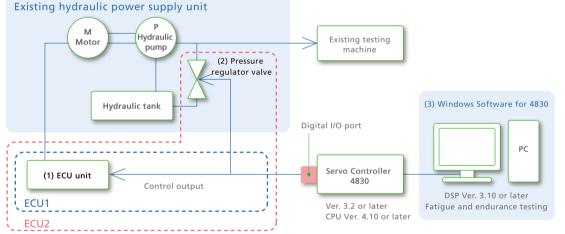
* Differs for regions with 50 Hz and 60 Hz power supplies

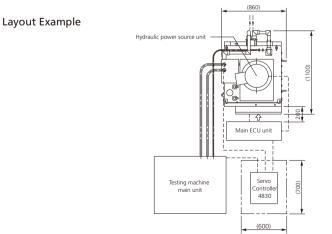
Energy-Saving Operation

Automatic Motor Power Supply Frequency and Supply Pressure Setting (with ECU2 and Windows software)

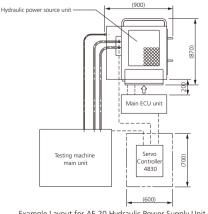
Automatically operates the system in energy-saving mode when the testing machine is in standby mode or depending on the test load status. Note: Set manually via the Servo Controller 4830 if Windows software is not available.




	Motor power supply frequency	Supply pressure				
During standby	35Hz	7-9MPa				
Just before testing	Automatically settings according to test conditions					
During testing	Periodically checks the displacement amplitude or test force to automatically set appropriate rpm or supply pressure.					


Note: If the function to automatically set the motor power supply frequency and supply pressure is used, the test conditions cannot be changed during testing.

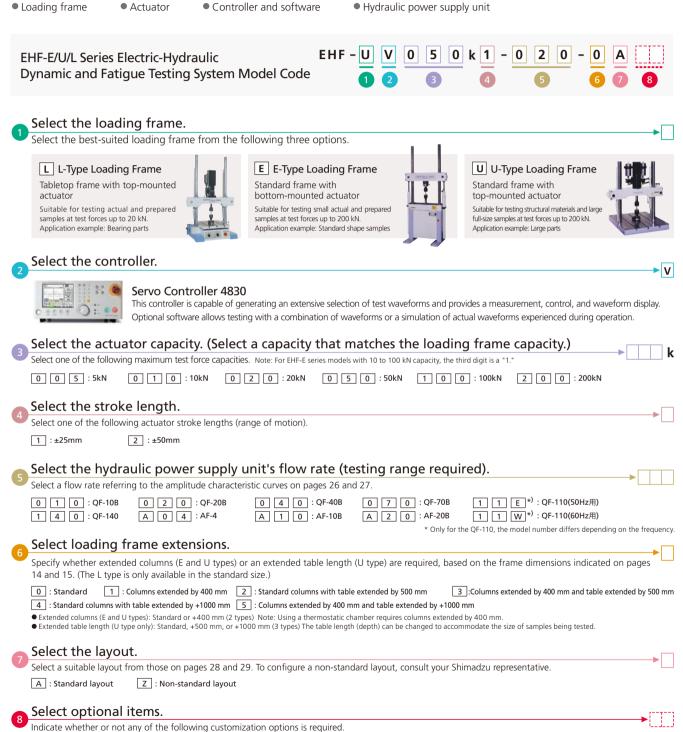
Configuration of Energy-Conservation Unit


ECU1 : Controls the motor's power supply frequency only (contains item (1))

Example Layout for QF-40 Hydraulic Power Supply Unit

Example Layout for AF-20 Hydraulic Power Supply Unit

37


Units: mm

EHF-E/U/L Series Electric-Hydraulic Dynamic and **Fatigue Testing System Model Code**

Electric-hydraulic Servopulser series systems can accommodate a wide variety of test force and testing speed requirements by selecting a combination of the following:

Loading frame

Hydraulic power supply unit

U : Includes base stand S : Special specifications (consult your Shimadzu representative separately)

• Hydraulic drive and clamping mechanism (E and U types only): If the standard hydraulic drive and clamping mechanism are not necessary, due to a fixed testing space, for example. • Optional base stand (U50 kN and U100 kN only): Allows the system to be elevated about 700 mm higher than when the table is placed on the floor. This option is required when attaching a thermostatic chamber to

a U-type loading frame

Various Dynamic Testing Systems

Electri

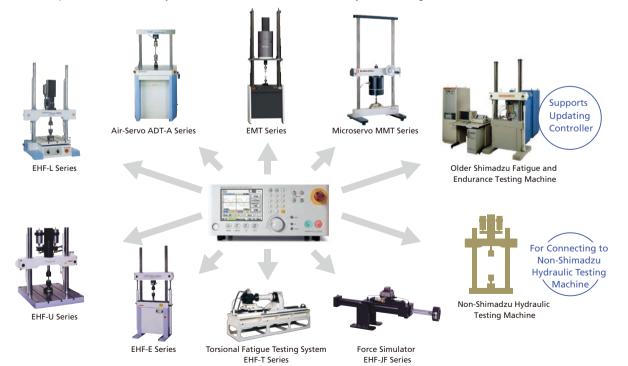
Controller for Dynamic and Fatigue Testing Systems

Servo Controller 4830

Controller for Dynamic and Fatigue Testing Systems Servo Controller 4830

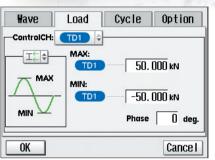
Dramatically Improves Accuracy in Evaluating Endurance and Dynamic Strength of Samples Ranging From Materials to Actual Samples

This controller is designed specifically for dynamic testing machines based on Shimadzu's long history of supplying dynamic and fatigue testing systems and based on feedback from many of our customers. It boasts high performance and exceptionally user-friendly operability. Equipped with a 24-bit high-resolution analog-digital converter, and featuring excellent reproducibility of load waveforms due to fully digital control, it can accommodate a wide variety of dynamic testing requirements.



Connectivity to the Entire Family of Shimadzu Dynamic and Fatigue Testing Machines and Non-Shimadzu Hydraulic Testing Machines

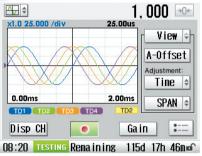
Note: Excludes HITS series and USF-2000 models.


The controller can be connected to Servopulser series electric-hydraulic, electromagnetic force, and pneumatic testing systems, jack systems (actuators), and various other testing machines.

It also can be used to update older Shimadzu systems, or controllers for non-Shimadzu hydraulic testing machines.

vstem

Very Easy to Operate

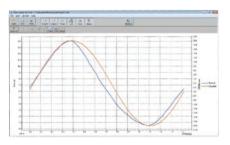

Testing parameters can be specified using the touch panel or jog dial. Test parameter settings, such as test force and displacement, can be changed at any time during tests.

Color Touch Panel

Enables all parameters to be specified and the test status to be monitored.

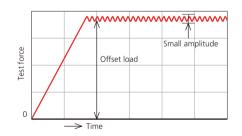
Jog Dial

Allows use of an analog type interface to make subtle operating adjustments.



Loading Parameter Settings

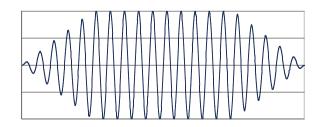
Waveform Display Functions

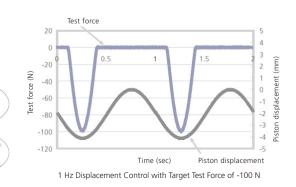

Autotuning and Automatic Gain Control Functions Ensure Loading Waveforms are Input Precisely

The autotuning function automatically determines the optimal parameters for controlling tests based on the actual test status and sample material. The automatic gain control function makes corrections so that peak values in loading cycles are consistent with parameter settings. Together, these functions help ensure precise loading waveforms. Consequently, even operators performing tests for the first time can automatically achieve highly accurate testing by simply setting parameters and starting testing.

Offset Load Tests

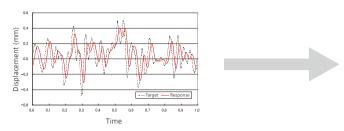
Offset load testing makes it possible to accurately apply offset micro loads while applying large test force loads.

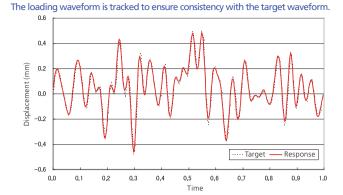



Push Test Function

This allows controlling peak test force values in a stable manner, even for samples with "play" (where no test force is applied).

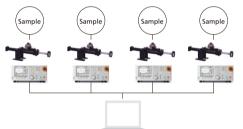
Slow Start/Stop


A slow start/stop time setting can be specified for tests. This eliminates operating differences between operators and helps ensure highly reproducible tests.



Waveform Distortion Correction Function

Because it can correct for loading mechanism-specific periodic strain, it can cancel out unwanted strain components and accurately control loads according to the target waveform.



Broad Applicability

Up to four testing machines can be operated for synchronous testing. X-T, X-Y, peak graphs, and a variety of other waveforms can be displayed. By connecting to a computer via a USB cable, a wide variety of test settings and sophisticated data acquisition settings can be specified.

Multiple Tests

A single computer can be used to simultaneously perform up to four different tests using different test parameters. For example, four endurance tests can be performed in parallel to acquire peak values and cycle data.

Synchronized Testing

Control and measurements of up to four testing machines can be synchronized by synchronizing the controller connection. The phase can also be freely set for each actuator.

Specifications

Model	Servo Controller 4830
Display unit	5.7-inch color LCD
Control panel	Touch panel, function keys, jog dial, numeric keypad, test operation keys, power unit operation keys
Test waveforms	Sine, triangular, rectangular, haversine, haver-triangular, trapezoidal, ramp, 1/2 haversine, step, sweep, and random waves, external input, programmed waves (optional*1), file waves (optional*1)
Test frequency	0.00001 to 1000 Hz
Slow settings	Slow start/stop
Test parameter registration	Max. 9 parameters
Waveform display functions	Time, X-Y, and peak waveforms
Measurement functions	1 range (rangeless) 24-bit Max. 40 kHz sampling with 4 acquisition channels Linear correction (linearization) function
Size	W350 × D420 × H148 mm
Control method	Full digital two-degree-of-freedom PID
Control functions	Amplitude, average gain correction (AGC), PID autotuning, sample anti-overloading function (contact load), user-specified phase differential control by synchronized operation, waveform distortion correction*1(transfer function correction)
Limit functions	Measurement value 4-point limiter, cycle counter, external input
Communications functions	USB interface
Other functions	Calculation function (such as adding, subtracting, averaging, and stress/strain), push testing function, consumable consumption time management function
External input/output	Analog Output: 4 channels (±10 V), Input: 1 channel (±10 V) For monitoring or waveform input Digital Output: 8 channels Input: 8 channels
Control signal input	Test force (TD1), stroke (TD2), and external input (AUX) Note: Up to two amplifiers can be added as an option.
Power requirements	Single-phase AC 100 to 230 V*2 50/60 Hz 300 VA

Updating older controllers to the latest model improves control performance and enables using the most up-to-date software.

vstem

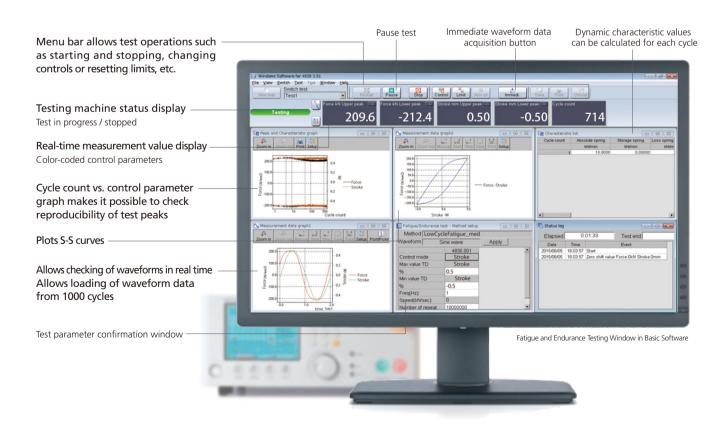
Various Dynamic Testing Systems

 *1 Only during software use *2 The standard power cord included with the system is only for AC 100 V.

Software for Servopulser Series Dynamic and Fatigue Testing Systems

Software for 4830

Easier, More Convenient, and More Sophisticated


Using systems in combination with dedicated software opens up a new world of testing. The dedicated software for the Servo Controller 4830 consists of basic software, add-on testing software, and GLUON 4830 fracture toughness testing software, which collectively support a variety of control and data analysis applications, such as basic fatigue testing, loading tests with simulated actual loads, and physical properties testing compliant with the latest standards.

Software		Single test	Multiple tests (simultaneous testing with	Synchronized tests (measurement tests with synchronized control of up to 4 actuators)		
			2 to 4 actuators)	2	3	4
	Fatigue and Endurance Testing	0	0	0	0	0
Basic Software	Program Function Testing	0	0	0	0	0
Basic Software	Static Characteristics Testing	0	0	_	-	-
	Combination Testing	0	0	_	-	-
	Static Testing	0	_	-	-	-
	Frequency-Sweep Testing Resonance Frequency Tracking Testing	0	_	0	-	-
Add-On Software Note: Requires basic software	Multi-Axis Combination Sine Wave Testing (without waveform distortion correction)	0	_	0	0	0
	Multi-Axis Combination Sine Wave Testing (with waveform distortion correction)	0	-	☆	☆	0
	Multi-Axis Working Waveform Simulation Testing	0	_	\$	☆	0
	Crack Propagation Testing Software	0	-	_	-	-
GLUON 4830	KIC/COD Testing Software	0	-	_	-	-
	JIC Testing Software	0	—	_	_	-

Compatible Compatible

 $\stackrel{\scriptstyle \sim}{\sim}$: Considers response results from other controllers (mutual interference correction)

- : Not compatible

57

Ceta Vener for H39 - CHErvorkEBRLanCodeFetget.5 ref		1010
ne gene genere gene team CDF Annt Despit Paue Lat Date Man		
	Direction Direction <thdirection< th=""> Direction <thdirection< th=""> Direction <thdirection< th=""> <thdirection< th=""> <thdir< th=""><th>2007 A 100 2007 A 0 2001 0 2001 0 2001 0 2005 0 2005 00</th></thdir<></thdirection<></thdirection<></thdirection<></thdirection<>	2007 A 100 2007 A 0 2001 0 2001 0 2001 0 2005 0 2005 00
	(1)	
	Bits Bits <th< td=""><td>Notices V</td></th<>	Notices V

It is possible to confirm the input waveform, stress-strain curve, and various parameters for each acquisition cycle. Data for any specific point can also be extracted from any cycle waveform using the point picking function.

N KN scand

Combining fatigue/endurance and static characteristics tests

makes it possible to measure the changes in static spring

This allows users to combine the loading waveforms available

in the controller, such as ramp and sine waves.

- Dynamic characteristic values can be confirmed from each data acquisition cycle.
- Peak value graph
- S-N curves can be plotted automatically from _ test results

constants.

	40.0			 2.12		
	A00 ·····					
	620			A		
	4000					
	30.0			1		
	30.0					11
5	540 m			1		2.1
2	3300			1		1.1
Streed	300-01			1		1.1
	290.0					
						111
~	20.0					
~	20.0					1.1
~	24.5				V	
2	280.0 280.0 220.0				<u> </u>	
5	285.6 285.0 285.0 295.0					
	280.0 280.0 220.0	10	100		109000	1000000

Basic Software

During fatigue/endurance tests, dynamic characteristics can be calculated which allows S-N curves plotting. Data can be acquired for up to 10,000 cycles (during interval acquisition).

This allows users to apply static loads, such as tension or compression, to samples and measuring the static characteristic values (such as the static spring constant).

Testing

Static Software

Available static tests include tensile, compression, 3-point bending, and 4-point bending. Various characteristic values can be calculated automatically. These include elasticity, upper yield point, lower yield point, yield strength, intermediate test force, intermediate displacement, maximum test force, break point, or energy.

Combination Testing

Program Function

Testing

Frequency-Sweep and Resonance Frequency Tracking Test Software

Makes it possible to sweep across to test dynamic characteristics over a range of frequencies, and allows endurance testing that repeats sweep cycles. Dynamic characteristic values can also be Frequency-Sweep Testing calculated for each frequency.

Multi-Axis Combination Sine Wave Testing Software

combination of sine waves with different amplitudes.

This allows use of multiple axes to perform tests with a

• Fracture Toughness Testing Software

Allows data analysis in compliance with the most up-to-date fracture toughness test standards. It supports crack propagation testing, KIC/CTOD testing, and JIC testing.

ASTM E647-13, ISO 12108:2012

Crack Propagation Testing

This is for evaluating the crack propagation behavior of notched samples. It is also ideal for introducing preliminary cracks for KIC and JIC testing.

ASTM E399-12, ISO 12737-96 BS 7448-1:1991, ASTM E1820-11

4830

KIC/CTOD Testing

This is for evaluating fracture toughness values. It calculates CTOD values corresponding to the fracture mode and determines the validity of KIC values.

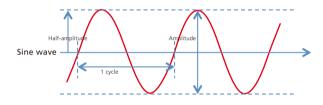
ASTM E1820-11, ASTM E813-89 JIS Z 2284-98

JIC Testing

This is for evaluating elastic fracture toughness values (JIC). It makes it easy to perform JIC tests, which involve complicated procedures.

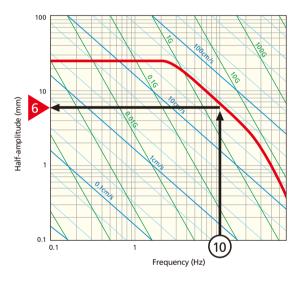
This makes it possible to automatically detect the resonance frequency of test samples before applying loads. The frequency can be automatically tracked if it is changed due to sample fatigue. Acceleration and strain values can be set directly and automatically readjusted even during testing.

Multi-Axis Actual Waveform Testing Software



This allows users to load actual working waveform data in CSV format, and to perform sophisticated simulation tests of actual loads by simply starting the test. A strain correction function helps ensure even the waveform details are reproduced precisely and accurately.

Amplitude Characteristics


Amplitude characteristic curves are logarithmic graphs that indicate the testing capacity of systems, with frequency plotted on the horizontal axis and the half-amplitude plotted on the vertical axis. Characteristics of the Servopulser series dynamic and fatigue testing systems are determined by the actuator, hydraulic power supply unit capacity, and the servo valve flow rate rating and frequency characteristics. Select the optimal system by checking the amplitude characteristics to see that they are consistent with the corresponding test conditions. Tests can also be performed at frequencies below 0.1 Hz; these are not shown here.

- The amplitude characteristic curves in this product brochure indicate the relation between half-amplitude and cycle speed, given sine wave motion at the rated load level.
- The lower left area of each characteristic curve indicates the testing capacity range, which depends on the capacity and stroke length of the selected actuator and the capacity of the hydraulic power supply unit.
 The curve below indicates the amplitude characteristics given a 60 Hz power supply. Characteristics with a 50 Hz power supply will be about 5/6 of indicated values.
- The amplitude characteristics indicated in this brochure do not include the frame or load cell characteristics. Compensate for the influence of these factors to determine actual amplitude characteristics.
- The amplitude characteristics indicated in this brochure were calculated based on typical characteristics of the servo valve being used, which may result in a difference of about 10 % on the frequency axis.
- There may be limitations on testing frequencies, due to the jig, sample, or other characteristics.

• To Perform Tests at a Frequency of 10 Hz

Starting at 10 Hz on the horizontal axis, move your finger upward parallel to the vertical axis until it intersects the amplitude characteristics curve. Then move it left parallel to the horizontal axis until it intersects the vertical axis. The value at that intersection point indicates the half-amplitude testing capacity at 10 Hz. In other words, it indicates that at 10 Hz the system is capable of applying a maximum amplitude of ±6 mm.

Frequency vs. Testing Time

This table indicates the time required to perform 10⁷ test cycles at the given frequency.

Fatigue tests involve a huge number of cycles. Therefore, performing tests at high frequencies can significantly reduce the overall testing time.

Test frequency	Cycles	Testing time
1Hz	10 ⁷ cycles	116 days
3Hz	10 ⁷ cycles	29 days
5Hz	10 ⁷ cycles	23 days
10Hz	10 ⁷ cycles	12 days
30Hz	10 ⁷ cycles	3.9 days
50Hz	10 ⁷ cycles	2.3 days
100Hz	10 ⁷ cycles	1.2 days
300Hz	10 ⁷ cycles	9 hours
20kHz	10 ⁷ cycles	8 minutes

Shimadzu Corporation www.shimadzu.com/an/ Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol "TM" or "®". Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

For Research Use Only. Not for use in diagnostic procedures. The contents of this publication are provided to you "as is" without warranty of any kind, and are subject to change without notice. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication.

> © Shimadzu Corporation, 2015 Printed in Japan 3655-02507-30AIK